Learning deep similarity models with focus ranking for fabric image retrieval
نویسندگان
چکیده
منابع مشابه
Learning deep similarity models with focus ranking for fabric image retrieval
Fabric image retrieval is beneficial to many applications including clothing searching, online shopping and cloth modeling. Learning pairwise image similarity is of great importance to an image retrieval task. With the resurgence of Convolutional Neural Networks (CNNs), recent works have achieved significant progresses via deep representation learning with metric embedding, which drives similar...
متن کاملLearning Fine-grained Image Similarity with Deep Ranking
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 1...
متن کاملDropout Feature Ranking for Deep Learning Models
Deep neural networks are a promising technology achieving state-of-the-art results in biological and healthcare domains. Unfortunately, DNNs are notorious for their non-interpretability. Clinicians are averse to black boxes and thus interpretability is paramount to broadly adopting this technology. We aim to close this gap by proposing a new general feature ranking method for deep learning. We ...
متن کاملLearning Similarity for Texture Image Retrieval
A novel algorithm is proposed to learn pattern similarities for texture image retrieval. Similar patterns in di erent texture classes are grouped into a cluster in the feature space. Each cluster is isolated from others by an enclosed boundary, which is represented by several support vectors and their weights obtained from a statistical learning algorithm called support vector machine (SVM). Th...
متن کاملDeep Semantic-Preserving and Ranking-Based Hashing for Image Retrieval
Hashing techniques have been intensively investigated for large scale vision applications. Recent research has shown that leveraging supervised information can lead to high quality hashing. However, most existing supervised hashing methods only construct similarity-preserving hash codes. Observing that semantic structures carry complementary information, we propose the idea of cotraining for ha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Image and Vision Computing
سال: 2018
ISSN: 0262-8856
DOI: 10.1016/j.imavis.2017.12.005